As the tower rises from the flat desert base,setbacks occur at each element in an upward spiralling pattern, decreasing the cross section of the tower as it reaches toward the sky.
A setback, sometimes called step-back, is a step-like recession in a wall.
To support the unprecedented height of the building, the engineers developed a new structural system called the buttressed core, which consists of a hexagonal core reinforced by three buttresses that form the ‘Y' shape. This structural system enables the building to support itself laterally and keeps it from twisting.
The building rises to the heavens in several separate stalks, which top out unevenly around the central spire. This somewhat odd-looking design deflects the wind around the structure and prevents it from forming organized whirlpools of air current, or vortices, that would rock the tower from side to side and could even damage the building.
The primary structural system of Burj Khalifa is reinforced concrete. Over 45,000 m3 (58,900 cu yd) of concrete, weighing more than 110,000 tonnes (120,000 ST; 110,000 LT) were used to construct the concrete and steel foundation, which features 192 piles, with each pile is 1.5 metre diameter x 43 metre long buried more than 50 m (164 ft) deep. Burj Khalifa's construction used 330,000 m3 (431,600 cu yd) of concrete and 55,000 tonnes of steel rebar, and construction took 22 million man-hours. A high density, low permeability concrete was used in the foundations of Burj Khalifa. A cathodic protection system under the mat is used to minimize any detrimental effects from corrosive chemicals in local ground water.
Special mixes of concrete are made to withstand the extreme pressures of the massive building weight; as is typical with reinforced concrete construction, each batch of concrete used was tested to ensure it could withstand certain pressures.
No comments:
Post a Comment